Facile Synthesis of 4-Alkyl (and Aryl)-2-aryl-6-diazo-4*H*thieno[3,2-*b*]pyridine-5,7-diones

Dong Joon Lee and Kyongtae Kim*

School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea

kkim@plaza.snu.ac.kr

Received February 10, 2004

Abstract: Treatment of 3-{3-alkyl (and aryl)amino-5arylthieno-2-yl}-2-diazo-3-oxopropanoates **8** with TMSOTf (3 equiv) in the presence of Et₃N (6 equiv) in CH₂Cl₂ for 1 h at room temperature afforded 4-alkyl (and aryl)-2-aryl-6diazo-4*H*-thieno[3,2-*b*]pyridine-5,7-diones **14** in excellent yields. On heating of **14** in the presence of a catalytic amount of Rh₂(CF₃CF₂CF₂CO₂)₄ in PhH for 4–10 h at reflux, corresponding ring contraction products, 4-alkyl (and aryl)-5,6-dihydro-4*H*-thieno[3,2-*b*]pyrrol-5-ones **16**, were produced in good to excellent yields.

2-Diazocyclohexane-1,3-dione and diazoquinolinedione derivatives are an important class of organic compounds. The former are utilized as intermediates for the synthesis of β -substituted α -chloroenones that are used as valuable intermediates in the synthesis of α -carbon-substituted enones¹ and biologically active natural products.² For example, treatment of 2-diazocyclohexane-1,3-dione **1** with acetyl chloride at room temperature for 3 h gave 3-acetoxy-2-chlorocyclohex-2-enone **2** in 81% yield³ (Scheme 1).

The latter are useful for the synthesis of biologically active compounds. For example, *N*-alkyldiazoquinolinedione **3** undergoes cyclization with vinyl acetate in the presence of $Rh_2(piv)_4$ catalyst in acidic EtOH to give 2-acetoxy-9-alkyl-2,3-dihydrofuro[2,3-*b*]quinoline-4-one **4**⁴ (Scheme 2), which can be further converted to naturally occurring alkaloids.

In addition, rhodium(II)-catalyzed reactions of **3** in refluxing CH₃CN gave oxindoles $5^{5.6}$ (Scheme 2), which are valuable synthetic intermediates of natural and pharmaceutical reagents. Compounds **1** and **3** were readily prepared by the diazo transfer reactions of the corresponding 1,3-diones with mesyl azide according to

10.1021/jo049769a CCC: \$27.50 @ 2004 American Chemical Society Published on Web 06/17/2004

SCHEME 1

SCHEME 3

Taber's method.⁷ Quinolinediones, precursors of **3**, are either commercially available or can be prepared by cyclizing the corresponding anthranilic acids with acetic anhydride in acetic acid.⁸ Surprisingly, 6-diazo-4*H*-thieno-[3,2-*b*]pyridine-5,7-diones or 6-diazo-4*H*-furo[3,2-*b*]pyridine-5,7-diones, analogous to compounds **3**, have not been reported.

A search of the literature revealed that there is one report⁹ describing the synthesis of 7-hydroxy-4*H*-thieno-[3,2-*b*]pyridine-5-one **7** by hydrolysis, followed by decarboxylation of 6-ethoxycarbonyl-7-hydroxy-4*H*- thieno[3,2*b*]pyridin-5-one **6**, prepared starting from ethyl 3-aminothiophene-2-carboxylate and diethyl malonate in two steps (Scheme 3). However, the method is of limited usefulness due to difficulty with accessing the introduction of aryl groups at the nitrogen atom of the pyridine moiety as well as the inaccessibility of the starting materials, i.e., 3-aminothiophene-2-carboxylate with diverse substituents at the 5-position.

Accordingly, it may be worthwhile to explore the synthetic method of the foregoing unexplored fused pyridine-5,7-diones, whose diazo compounds would be expected to comprise a promising starting material for the synthesis of novel bioactive compounds.

Recently, we reported a synthesis of a mixture of 5.6dihydro-4*H*-thieno[3,2-*b*]pyrrol-5-one and the correspond-

^{*} Phone: 82 2880 6636. Fax: 82 2874 8858.

⁽¹⁾ Lee, Y. R.; Jung, Y. S. J. Chem. Soc., Chem. Commun. 1998, 2621–2622 and references cited therein.

^{(2) (}a) Johnson, C. R.; Braun, M. P. J. Am. Chem. Soc. **1993**, *115*, 11014–11015. (b) Johnson, C. R.; Harikrishnan; Golebiowski, A. Tetrahedron Lett. **1994**, *35*, 7735–7738.

^{(3) (}a) Alonso, M. E.; Chitty A. W. *Tetrahedron Lett.* **1981**, *22*, 4181–4184. (b) Alonso, M. E.; Garcia, M. C.; Chitty, A. W. J. Org. Chem. **1985**, *50*, 3445–3449.

 ⁽⁴⁾ Pirrung, M. C.; Blume, F. J. Org. Chem. 1999, 64, 3642–3649.
(5) Lee, Y. R.; Jung, Y. S.; Kim, B. S. Tetrahedron Lett. 1999, 40, 8219–8221.

^{(6) (}a) Lakahmaiah, G.; Kawabata, T.; Shang, M.; Fuji, K. J. Org. Chem. 1999, 64, 1699–1704. (b) van Henegouwen, W. G. B.; Hiemstra, H. J. Org. Chem. 1997, 62, 8862–8867. (c) Miah, S.; Moody, C. J.; Richards, I. C.; Slawin, A. M. Z. J. Chem. Soc., Perkin Trans. 1. 1997, 2405–2412.

⁽⁷⁾ Taber, D. F.; Ruckle, R. E., Jr.; Hennessy, M. J. Org. Chem. **1986**, *51*, 4077–4078.

^{(8) (}a) Buckle, D. R.; Cantello, B. C. C.; Smith, H.; Spice, B. A. *J. Med. Chem.* **1975**, *18*, 726–732. (b) Lutz, R. E.; Codington, J. F.; Rowlett, R. J.; Deint, A. J.; Bailey, P. S. *J. Am. Chem. Soc.* **1946**, *68*, 1810–1812.

⁽⁹⁾ Baker, J. M.; Huddleston, P. R.; Chadwick, N.; Keenan, G. J. J. Chem. Res., Synop. **1980**, 6–7.

SCHEME 4

SCHEME 5

TABLE 1. Yields of Compounds 11 and 8

Ar	\mathbb{R}^2	compd	% yield ^a	compd	% yield ^a	
Ph	Me	11a	87	8a	91	
Ph	Et	11b	80	8b	71	
Ph	<i>i</i> -Pr	11c	72	8c	52	
4-MeC ₆ H ₄	Me	11d	66	8d	77	
Ph	4-MeOC ₆ H ₄	11e	78	8e	80	
Ph	2-MeC ₆ H ₄	11f	74	8f	83	
Ph	4-ClC ₆ H ₄	11g	71	8g	87	
Ph	2-NCC ₆ H ₄	11 h	64	8 h	38	
4-MeOC ₆ H ₄	4-MeOC ₆ H ₄	11i	69	8i	88	
4-MeOC ₆ H ₄	4-BrC ₆ H ₄	11j	53	8j	53	
4-MeOC ₆ H ₄	4-NCC ₆ H ₄	11 k	72	8ĸ	57	
4-BrC ₆ H ₄	Ph	11l	68	81	77	
4-BrC ₆ H ₄	$4-MeOC_6H_4$	11m	69	8m	88	
^a Isolated	yields.					

ing enols **9** from the reactions of 3-(3-alkylamino-5arylthieno-2-yl)-2-diazo-3-oxopropanoates **8** ($R^1 = R^2 =$ alkyl) with a catalytic amount of $Rh_2(OAc)_4 \cdot 2H_2O$ in benzene at reflux¹⁰ (Scheme 4).

Synthesis of compounds **8e**-**m** was achieved by treatment of thioaroylketene *S*,*N*-acetals **11e**-**m**, prepared by the reactions of aroylketene *S*,*S*-acetals **10** with arylamines in the presence of BF₃·OEt,¹¹ followed by treatment of Lawesson's reagent,¹² with 2-diazo-3-trimethylsilyloxy-3-butenoate **12** in the presence of Hg(OAc)₂ (Scheme 5). Yields of compounds **8** and **11** are summarized in Table 1.

We found that compounds **8** were excellent starting materials for the synthesis of title compounds **14**, which were prepared by the reactions of compounds **8** with trimethylsilyl trifluoromethanesulfonate (TMSOTf) (3 equiv) in the presence of Et_3N (6 equiv) in CH_2Cl_2 for 1 h at room temperature in excellent yields (Scheme 6, method A). Yields of **14** are summarized in Table 2.

It is interesting to note that dihydro- and tetrahydrothieno[3,2-*b*]pyridines are seldom reported¹³ despite ample examples of thieno[3,2-*b*]pyridine-5-one derivatives that are biologically important.¹⁴ However, no diazothieno[3,2-*b*]pyridinediones whatsoever have been reported.

SCHEME 6

Alternatively, compounds **14** could be prepared utilizing di-*tert*-butoxycarbonate (BOC₂O) and N,N-(dimethylamino)pyridine (DMAP)¹⁵ (method B). Their yields are listed in Table 2.

Table 2 shows that very high yields of 14 were obtained in 1 h reactions regardless of whether R² is alkyl or aryl group when TMSOTf and Et₃N were used, whereas low yields of 14a - d were obtained in the cases of $R^2 = alkyl$ groups when BOC₂O and DMAP were used. In contrast, yields of 14 were comparable or inferior to those obtained under conditions involving TMSOTf in the cases where R^2 = aryl groups. One crucial drawback of the reactions involving BOC₂O and DMAP was the recovery of a considerable amount of 8 in most of the reactions. In addition, the reaction times were variable depending on the properties of \mathbb{R}^2 . It appeared that the cyclization reactions proceeded slowly when R² was an aryl group having an electron-donating group such as methoxy (14e and 14i) and alkyl groups (14a-d). In particular, it took 10 and 24 h, respectively, when Ar = Ph, $R^2 = Me$ (14a) and Ar = 4-MeC₆H₄, R^2 = Me (14d). When R^2 = $2-MeC_6H_4$ (14f), it took 15 h presumably due to the steric hindrance arising from the *o*-methyl group. It may be worthwhile to mention that the reactions of 8h and 8k occurred smoothly at room temperature for a shorter time (0.5 h) to give the corresponding cyclized product 14h and 14k, along with *t*-BOC-protected starting materials 15h (27%) and 15k (17%), respectively, in addition to the starting material. The role of BOC₂O and DMAP in the cyclization of 8 to give 14 is uncertain. Treatment of 15h, presumably formed via 1-tert-butoxycarbonyl-4-dimethylaminopyridinium *tert*-butyl carbonate,¹⁶ with a mixture of BOC₂O and DMAP for 24 h at reflux under the same foregoing conditions, did not give 14h. Only 15h was quantitatively recovered. The result suggests that N-BOC-protected 8 may not be a reactive intermediate leading to 14. In contrast, treatment of 8a, 8c, 8e, and 8g with tert-BuOK (0.2 equiv) in THF at room temperature gave 14a (93%), 14c (78%), 14e (95%), and 14g

 ⁽¹⁰⁾ Lee, D. J.; Kim, K.; Park, Y. J. Org. Lett. 2002, 4, 873–876.
(11) Kohra, S.; Turuya, S.; Kimura, M.; Ogata, K. Chem. Pharm. Bull. 1993, 41, 1293–1296.

⁽¹²⁾ Huang, Z.-t.; Liu, Z.-r. Synth. Commun. 1989, 19, 943–958.

⁽¹³⁾ Brugier, D.; Oututquin, F.; Paulmier, C. J. Chem. Soc., Perkin Trans. 1. 2001, 37–43.

^{(14) (}a) Suzuki, F.; Miwa, Y.; Hayashi, H.; Ishii, A.; Ichikawa, S.; Miki, I. Eur. Pat. Appl. CODEN; EPXXDW EP 503822 A1 19920916, 1992. (b) Luo, J. K.; Castle, R. N. *J. Heterocycl. Chem.* **1991**, *28*, 205-208. (c) Malicorne, G.; Bompart, J.; Giral, L.; Despaux, E. *Eur. J. Org. Chem.* **1991**, *26*, 3–11. (d) Davies, R. V. Eur. Pat. Appl. CODEN; EPXXDW EP 269295 A1 199880601, 1998.

⁽¹⁵⁾ Koskinen, A. M. P.; Pihko, P. M. Tetrahedron Lett. **1994**, 35, 7417–7420.

^{(16) (}a) Knölker, H.-J.; Braxmeier, T.; Schlechtingen, G. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 7–2500. (b) Ragnarsson, U.; Grehn, L. Acc. Chem. Res. **1998**, *31*, 494–501.

TABLE 2. Yields of Compounds 14 and 16

		method A	method B			method C		method D	
reactant	product	% yield ^a	% yield ^a	time, h	product	% yield ^a	time, h	% yield ^a	time, h
8a	14a	91	54 (40) ^c	10	16a	77	6	72	3
8b	14b	63	0 (94) ^c	24	16b	79	7	73	5
8 c	14c	57	0 (95) ^c	24	16c	70	7	44	5
8d	14d	96	49 (44) ^c	24	16d	88	4	47	4
8e	14e	90	93	1	16e	87	5	79	6
8f	14f	95	64 (30) ^c	15	16f	92	8	28	4
8g	14g	b	93	1	16g	96	4	34	5
8h	14 h	91	64 (27) ^d	0.5^{e}	16 h	95	6	33	3
8i	14i	87	80 (19) ^c	2	16i	99	5	35	4
8j	14j	94	95	0.5	16j	62	5	45	3
8ĸ	14 k	b	81 (17) ^d	0.5^{e}	16k	71	10	65	3
81	14l	89	95	0.5	16l	87	8	74	2
8 m	14m	95	96	0.5	16m	92	7	59	2

^{*a*} Isolated yields. ^{*b*} Reactions were not carried out. ^{*c*} Yields of recovered **8**. ^{*d*} Yields of compounds **15h** and **15k**. ^{*e*} Reactions were carried out at room temperature.

(86%), respectively. The result suggests the importance of an amide ion, which facilitates intramolecular nucleophilic displacement of an alkoxide to yield **14**. However, it is necessary to delineate the role of BOC₂O and DMAP in view of the basicity of DMAP. In the meantime, the high yields of **14** resulting from the TMSOTf-derived reactions in the presence of Et_3N may be rationalized on the basis of the intramolecular nucleophilic attack of the amino group of **8** onto the ester carbonyl carbon activated by the interaction of the carbonyl oxygen with TMSOTf. Et_3N would be expected to trap the CF₃SO₃H generated. Nucleophilic attack of cyanophenylamino groups of **8h** and **8k** onto BOC₂O would give compounds **15h** and **15k**, respectively.

Heating compounds **14** in the presence of a catalytic amount of $Rh_2(OAc)_4 \cdot 2H_2O$ in PhH afforded 4-alkyl (and aryl)-2-aryl-5,6-dihydro-4*H*-thieno[3,2-*b*]pyrrol-5-ones **16**. Much better yields of **16** were obtained utilizing a catalytic amount of $Rh_2(CF_3CF_2CF_2CO_2)_4$ in place of $Rh_2(OAc)_4 \cdot 2H_2O$ (Scheme 6). Yields of **16** and reaction times are summarized in Table 2. Although compounds **16** are all new, an analogous type of ring contraction of diazoquinolines has been reported.^{5,15}

Alternatively, compound **16a** was directly obtained from the reaction of **11a** with maleic anhydride **13** in various solvents such as PhH (2 h, 56%), CH₃CN (45 min, 49%; 3 h, 52%), toluene (1.5 h, 34%), and CH₂Cl₂ (10 h, 92%) at reflux (Scheme 6). Similar treatment of **11b** in CH₂Cl₂ for 40 h gave **16b** in 41% yield. In addition, compounds **16n**-**p** were obtained in 76, 41, and 42% yields, respectively, using the corresponding starting materials **11n**-**p**. Yields were variable depending on the structures of **11**, and the reaction times were relatively longer compared with those in listed in Table 2.

The formation of **16** from **11** could be rationalized on the basis of Michael-type addition of the thione sulfur to maleic anhydride, leading to succinic anhydride derivative **17**, which equilibrates with its enol **18** (Scheme 7). Intramolecular nucleophilic attack of the enolic carbon of **18** to the imino carbon would give intermediate **19**. Loss of a methanethiolate ion from **19** gives 2,3-dihydrothiophene intermediate **20**, analogous to the inter-

SCHEME 7

mediates proposed in the reactions of **11** with carbonyl compounds having active methylene hydrogen atoms in the presence of $Hg(OAc)_2$.¹⁷ Intramolecular nucleophilic attack of the imino nitrogen to the carbonyl group of the succinic anhydride moiety, followed by decarboxylation, concomitant with aromatization of dihydrothiophene moiety, would result in the formation of **16**.

In summary, stirring 3-{3-alkyl (and aryl)amino-5arylthieno-2-yl}-3-oxo-2-diazopropanoates with TMSOTf and Et₃N in CH₂Cl₂ at room temperature produced diazothieno[3,2-*b*]pyridine-5,7-diones in excellent yields. The compounds underwent ring contraction reactions by heating in the presence of Rh₂(CF₃CF₂CF₂CO₂)₄ catalyst in PhH at reflux to give 5,6-dihydro-4*H*-thieno[3,2-*b*]pyrrol-5-ones. Both classes of compounds are all newly discovered despite the existence of analogous compounds such as 2-diazocyclohexane-1,3-diones and diazoquinolinediones.

Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-2000-DP-0261).

Supporting Information Available: General procedure for the synthesis of **8**, **10**, **11**, and **14**–**16**, ¹H NMR, ¹³C NMR, IR, and elemental analysis of **8a–m**, **11a–p**, **14a–m**, **15h**, **15k**, and **16a–p**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO049769A

⁽¹⁷⁾ Kim, B. S.; Kim, K. J. Org. Chem. 2000, 65, 3690-3699.